

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

Financial & Actuarial Mathematics

Aggregation of Integer-Valued Risks with Copula-Induced Dependency Structure

Martin Schmidt

March 11, 2019

Copula Theory

- Definition
- Sklar's Theorem
- Examples of Copulas
- 2 Discrete Risk Aggregation
 - Distribution Function of the Aggregate Loss S
 - Probability Mass Function of the Aggregate Loss S
 - Risk Measures for the Aggregate Loss S
- 8 Numerical Examples for Poisson-margins
 - Distribution and Probability Mass Function of S
 - Risk Measures for S

Definition Sklar's Theorem Examples of Copulas

The multivariate distribution function F of a random vector (X_1, \ldots, X_d) contains two kinds of information:

- the univariate marginal distributions F_1, \ldots, F_d and
- the dependency structure among the components.

Definition

Let $d \in \mathbb{N}, d \geq 2$ and let (U_1, \ldots, U_d) denote a random vector on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, such that the random variable U_i is standard uniformly distributed for all $i = 1, \ldots, d$. A *d*-dimensional copula *C* is a multivariate distribution function on the *d*-dimensional unit cube with univariate standard uniform marginals,

$$C: [0,1]^d \to [0,1]$$

$$(u_1,\ldots,u_d) \mapsto \mathbb{P}[U_1 \le u_1,\ldots,U_d \le u_d].$$

Definition Sklar's Theorem Examples of Copulas

Any dependency structure can be described using a copula

Sklar's theorem

Let F denote a multivariate distribution function with univariate marginals F_1, \ldots, F_d . Then there exists a *d*-dimensional copula $C : [0,1]^d \rightarrow [0,1]$, such that for all $x_1, \ldots, x_d \in \mathbb{R}$ it holds that

$$F(x_1,...,x_d) = C(F_1(x_1),...,F_d(x_d)).$$
 (1)

If F_1, \ldots, F_d are continuous, then *C* is unique. Conversely, if *C* is a copula and F_1, \ldots, F_d are univariate distribution functions, then the function *F* defined via (1) is a *d*-dimensional distribution function with one-dimensional margins F_1, \ldots, F_d .

Definition Sklar's Theorem Examples of Copulas

Restricted uniqueness of copulas in the case of non-continuous margins

Sklar's theorem states that for continuous marginal distributions the copula is unique on $[0, 1]^d$.

 \Rightarrow This is no longer true for discrete or mixed margins!

Theorem

Let F denote the multivariate distribution function of a random vector $X = (X_1, \ldots, X_d)$ on \mathbb{R}^d with univariate marginals F_1, \ldots, F_d . Then a copula C of X is uniquely determined on $\operatorname{Ran}(F_1) \times \cdots \times \operatorname{Ran}(F_d)$.

Extreme example: Consider Bernoulli-distributed random variables $X_1 \sim \text{Bern}(p_1)$, $X_2 \sim \text{Bern}(p_2)$ with $p_1, p_2 \in (0, 1)$. Then a copula of (X_1, X_2) is only uniquely determined in the point $(1 - p_1, 1 - p_2)$.

Definition Sklar's Theorem Examples of Copulas

Fundamental copulas

Independence copula

The independence copula
$$\Pi : [0,1]^d \rightarrow [0,1]$$
 is given by

$$\Pi(u_1,\ldots,u_d) := \prod_{i=1}^d u_i, \quad u_1,\ldots,u_d \in [0,1].$$

Comonotonicity copula

The comonotonicity copula $M: [0,1]^d \rightarrow [0,1]$ is given by

$$M(u_1,\ldots,u_d):=\min\{u_1,\ldots,u_d\},\quad u_1,\ldots,u_d\in[0,1].$$

Countermonotonicity copula (only in dimension d = 2)

The countermonotonicity copula $\mathcal{W}:[0,1]^2\rightarrow [0,1]$ is given by

$$W(u_1, u_2) := \max\{u_1 + u_2 - 1, 0\}, \quad u_1, u_2 \in [0, 1].$$

Definition Sklar's Theorem Examples of Copulas

Gaussian copulas

Definition

Let Φ denote the distribution function of a univariate standard normal distribution and let Φ_P^d be the distribution function of a *d*-variate normal distribution with correlation matrix P and mean 0. Then for $u_1, \ldots, u_d \in [0, 1]$ the *d*-dimensional Gaussian copula $C_P^{\text{Ga}} : [0, 1]^d \to [0, 1]$ is given as

$$C_P^{\operatorname{Ga}}(u_1,\ldots,u_d) := \Phi_P^d(\Phi^{-1}(u_1),\ldots,\Phi^{-1}(u_d)).$$

- If $P = I_d$, where I_d denotes the *d*-dimensional identity matrix, then $C_P^{\text{Ga}} \equiv \Pi$.
- If $P = J_d$, where J_d denotes a $d \times d$ matrix consisting entirely of ones, then $C_P^{\text{Ga}} \equiv M$.

• If
$$d = 2$$
 and $P = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$, then $C_P^{\text{Ga}} \equiv W$.

Definition Sklar's Theorem Examples of Copulas

t-copulas

Definition

Let t_{ν} be the distribution function of a univariate standard t-distribution with ν degrees of freedom, $\nu > 0$. By $t_{\nu,P}$ we denote the multivariate distribution function of a d-variate t-distribution with dispersion matrix P and $\nu > 0$ degrees of freedom. Then for u_1, \ldots, u_d the d-dimensional t-copula $C_{\nu,P}^t : [0,1]^d \rightarrow [0,1]$ is given as

$$C_{\nu,P}^t(u_1,\ldots,u_d) := t_{\nu,P}(t_{\nu}^{-1}(u_1),\ldots,t_{\nu}^{-1}(u_d)).$$

- **Caution!** If $P = I_d$, where I_d denotes the *d*-dimensional identity matrix, then $C_{\nu,P}^t \neq \Pi$.
- If $P = J_d$, where J_d denotes a $d \times d$ matrix consisting entirely of ones, then $C_{\nu,P}^t \equiv M$.

 Copula Theory
 Distribution Function of the Aggregate Loss S

 Discrete Risk Aggregation
 Probability Mass Function of the Aggregate Loss S

 Numerical Examples for Poisson-margins
 Risk Measures for the Aggregate Loss S

Setting

- Arbitrary dimension $d \in \mathbb{N}_{\geq 2}$
- \mathbb{N}_0 -valued random variables (risks) X_1, \ldots, X_d

•
$$X_i \sim F_i$$
 for $i = 1, \ldots, d$

- Dependency structure of the portfolio (X_1, \ldots, X_d) is given by an arbitrary copula C
- Aggregate portfolio loss $S = \sum_{i=1}^{d} X_i$

Distribution Function of the Aggregate Loss *S* Probability Mass Function of the Aggregate Loss *S* Risk Measures for the Aggregate Loss *S*

Notational conventions

For $n \in \mathbb{N}_0$ we define

- $\mathcal{J}_n^d = \{j = (j_1, \ldots, j_d) \in \mathbb{N}_0^d : j_1 + \cdots + j_d \leq n\}$
- $\overline{\mathcal{J}}_n^d = \{j = (j_1, \ldots, j_d) \in \mathbb{N}_0^d : j_1 + \cdots + j_d = n\}$
- $p_n = \mathbb{P}[S = n]$
- $c_n = \sum_{j \in \overline{\mathcal{J}}_n^d} C(F_1(j_1), \dots, F_d(j_d))$
- Convention: $p_n = c_n = 0$, if n < 0

Further,

•
$$\mathcal{I}^d = \{i = (i_1, \dots, i_d) \in \{0, 1\}^d\}$$

• $\operatorname{sign}(i) = (-1)^{\sum_{k=1}^d i_k}, \quad i \in \mathcal{I}^d$

Distribution Function of the Aggregate Loss *S* Probability Mass Function of the Aggregate Loss *S* Risk Measures for the Aggregate Loss *S*

Known results

Joint probability mass function of (X_1, \ldots, X_d)

From the properties of copulas we know that for $j_1,\ldots,j_d\in\mathbb{N}_0$

$$\mathbb{P}[X_1 = j_1, \dots, X_d = j_d] = \sum_{i \in \mathcal{I}^d} \operatorname{sign}(i) C(F_1(j_1 - i_1), \dots, F_d(j_d - i_d)).$$

Distribution of the sum S

$$\mathbb{P}[S \leq n] = \sum_{j \in \mathcal{J}_n^d} \mathbb{P}[X_1 = j_1, \dots, X_d = j_d], \quad n \in \mathbb{N}_0$$

Disadvantage of the **formula above: inefficient**, many summands \Rightarrow For d = 6 and n = 100 we sum up 109.177.903.744 terms!

Theorem (Distribution of the sum S)

Let X_1, \ldots, X_d denote \mathbb{N}_0 -valued random variables with univariate distribution functions F_1, \ldots, F_d , respectively. Then for $n \in \mathbb{N}_0$ and every copula C of the random vector (X_1, \ldots, X_d) it holds that

$$\mathbb{P}[S \leq n] = \sum_{k=0}^{\min\{d-1,n\}} (-1)^k \binom{d-1}{k} c_{n-k}.$$

 \Rightarrow For d = 6 and n = 100 we reduce the number of summands by approximately 99.53%

Distribution Function of the Aggregate Loss *S* **Probability Mass Function of the Aggregate Loss** *S* Risk Measures for the Aggregate Loss *S*

Recursion for the probability mass function of S

Remember:

- $\overline{\mathcal{J}}_n^d = \{j = (j_1, \dots, j_d) \in \mathbb{N}_0^d : j_1 + \dots + j_d = n\}$
- $p_n = \mathbb{P}[S = n]$
- $c_n = \sum_{j \in \overline{\mathcal{J}}_n^d} C(F_1(j_1), \dots, F_d(j_d))$

• Convention:
$$p_n = c_n = 0$$
, if $n < 0$

Recursion for the probability mass function of the sum S

Starting with $p_0 = c_0$, the following recursion formula applies:

$$p_n=c_n-\sum_{k=1}^n\binom{k+d-1}{d-1}p_{n-k},\quad n\in\mathbb{N}.$$

Numerical speed-up

Disadvantages of the recursion formula:

- Weak efficiency especially for sparse univariate marginal distributions or large dimensions *d* combined with large *n*
- High precision is necessary

Theorem (Probability mass function of the sum S)

Let X_1, \ldots, X_d denote \mathbb{N}_0 -valued random variables with univariate distribution functions F_1, \ldots, F_d , respectively. Then for all $n \in \mathbb{N}_0$ and every copula C of the random vector (X_1, \ldots, X_d) it holds that

$$\mathbb{P}[S=n] = \sum_{k=0}^{\min\{d,n\}} (-1)^k \binom{d}{k} c_{n-k}.$$

Distribution Function of the Aggregate Loss *S* **Probability Mass Function of the Aggregate Loss** *S* **Risk Measures for the Aggregate Loss** *S*

Integration over copula densities

Definition

If the probability measure associated with a copula C is absolutely continuous with respect to the Lebesgue measure on $[0, 1]^d$, then by Radon–Nikodým there exists an almost everywhere unique density $c : [0, 1]^d \rightarrow [0, \infty)$ such that for $u_1, \ldots, u_d \in [0, 1]$:

$$C(u_1,\ldots,u_d)=\int_0^{u_1}\cdots\int_0^{u_d}c(v_1,\ldots,v_d)\ dv_d\ldots dv_1.$$

Theorem (Probability mass function of the sum S)

For $n \in \mathbb{N}_0$ we have that

$$\mathbb{P}[S=n] = \sum_{j\in \overline{\mathcal{J}}_n^d} \int_{F_1(j_1-1)}^{F_1(j_1)} \cdots \int_{F_d(j_d-1)}^{F_d(j_d)} c(v_1,\ldots,v_d) \ dv_d\ldots dv_1.$$

Distribution Function of the Aggregate Loss SProbability Mass Function of the Aggregate Loss SRisk Measures for the Aggregate Loss S

Value-at-Risk and Expected Shortfall

Value-at-Risk

At a given confidence level $\alpha \in (0, 1)$, the Value-at-Risk (VaR) of a random variable S is the smallest value $s \in \mathbb{R}$ where the distribution function F_S of S reaches or exceeds the value α for the first time:

$$\operatorname{VaR}_{\alpha}(S) := \inf\{s \in \mathbb{R} : F_{S}(s) \geq \alpha\}.$$

Expected Shortfall

For a random variable S with $\mathbb{E}[|S|] < \infty$ the Expected Shortfall (ES) at a confidence level $\alpha \in (0, 1)$ is given as

$$\mathrm{ES}_{\alpha}(S) := \frac{1}{1-\alpha} \int_{\alpha}^{1} \mathrm{VaR}_{u}(S) \ du.$$

Example

Let d = 3 and consider Poisson-distributed random variables

$$X_1 \sim \operatorname{Poi}(3), X_2 \sim \operatorname{Poi}(5) \text{ and } X_3 \sim \operatorname{Poi}(8).$$

On the next slides we will present the distribution, probability mass function and risk measures for the sum $S = X_1 + X_2 + X_3$ under the following dependency scenarios:

- Fundamental copulas
- Gaussian copulas
- *t*-copulas with $\nu = 1$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of SRisk Measures for S

Distribution and Probability Mass Function of SRisk Measures for S

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of S Risk Measures for S

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of S Risk Measures for S

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of S Risk Measures for S

Distribution and Probability Mass Function of S Risk Measures for S

Distribution and Probability Mass Function of S Risk Measures for S

Distribution and Probability Mass Function of S Risk Measures for S

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Gaussian copulas

Notes for the following plots:

- By a Gaussian copula with parameter ρ, i.e. C_ρ^{Ga}, we denote a Gaussian copula with correlation matrix such that all pairwise correlations coincide to ρ ∈ [-1, 1].
- For the Poisson-distributed random variables from our example it holds that $X_1 + X_2 \stackrel{d}{=} X_3$, if X_1 and X_2 are independent. So if we try to minimize the variance of the sum $X_1 + X_2 + X_3$ under a Gaussian copula we can use

$$V=egin{pmatrix} 1&0&-\sqrt{rac{3}{8}}\ 0&1&-\sqrt{rac{5}{8}}\ -\sqrt{rac{3}{8}}&-\sqrt{rac{5}{8}}&1 \end{pmatrix},$$

where the entries of the correlation matrix V are obtained by simple calculation under positive semi-definite constraints.

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Gaussian copulas

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Gaussian copulas

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of S Risk Measures for S

Gaussian copulas

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Gaussian copulas

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Gaussian copulas

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

t-copulas

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Note for the following plots:

• By a *t*-copula with parameters ν and ρ , i.e. $C_{\nu,\rho}^t$, we denote a *t*-copula with ν degrees of freedom and dispersion matrix with 1 in the diagonal and all other entries coinciding to $\rho \in [-1, 1]$.

Distribution and Probability Mass Function of SRisk Measures for S

Distribution and Probability Mass Function of SRisk Measures for S

Distribution and Probability Mass Function of SRisk Measures for S

Distribution and Probability Mass Function of SRisk Measures for S

Distribution and Probability Mass Function of SRisk Measures for S

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of S Risk Measures for S

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Fundamental copulas – Expected Shortfall

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Fundamental copulas – Expected Shortfall

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Fundamental copulas – Expected Shortfall

Distribution and Probability Mass Function of S Risk Measures for S

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of S Risk Measures for S

Distribution and Probability Mass Function of S Risk Measures for S

Distribution and Probability Mass Function of S Risk Measures for S

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of S Risk Measures for S

Distribution and Probability Mass Function of S Risk Measures for S

Distribution and Probability Mass Function of S Risk Measures for S

Gaussian copulas – Expected Shortfall

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of S Risk Measures for S

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of ${\cal S}$ Risk Measures for ${\cal S}$

Distribution and Probability Mass Function of S Risk Measures for S

Distribution and Probability Mass Function of S Risk Measures for S

- DURANTE, F., AND SEMPI, C., Principes of Copula Theory. CRC Press. 2015.
- GENEST, C., AND NEŠLEHOVÁ, J., A primer on copulas for **.** count data. ASTIN Bulletin 37, 2 (2007), 475–515.
- GIJBELS, I., AND HERRMANN, K., On the distribution of sums of random variables with copula-induced dependence. IME 59, C (2014), 27-44.

- Solution (2014) Separate Modeling with Copulas. CRC Press, 2014.
- NCNEIL, A. J., FREY, R., AND EMBRECHTS, P., Quantitative Risk Management. Princeton University Press, 2005.
- PUCCETTI, G., AND RÜSCHENDORF, L., Computation of sharp bounds on the distribution of a function of dependent risks. J. Comput. Appl. Math 236, 7 (2012), 1833–1840.